J. Ocean Univ. China (Oceanic and Coastal Sea Research) Review DOI 10.1007/s11802-012-2109-1 ISSN 1672-5182, 2012 11 (4): 533-538 http://www.ouc.edu.cn/xbywb/ E-mail: [email protected] Bromophenols from Marine Algae with Potential Anti-Diabetic Activities
1) Department of Pharmacology, Capital Medical University, Beijing 100069, P. R. China 2) Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, P. R. China
(Received July 16, 2012; revised August 13, 2012; accepted September 17, 2012) Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2012
Abstract Marine algae contain various bromophenols with a variety of biological activities, including antim-
icrobial, anticancer, and anti-diabetic effects. Here, we briefly review the recent progress in researches on the
biomaterials from marine algae, emphasizing the relationship between the structure and the potential anti-diabetic
applications. Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of
protein tyrosine phosphatase 1B, α-glucosidase, as well as other mechanisms.
Key words bromophenols; marine algae; type 2 diabetes mellitus
* Corresponding authors. Tel.: 0086-532-82898916
E-mail: [email protected]; [email protected]References Carroll, A. R., Healy, P. C., Quinn, R. J., and Tranter, C. J., 1999. Prunolides a, b, and c: Novel tetraphenolic
bis-spiroketals from the australian ascidian Synoicum prunum. Journal of Organic Chemistry, 64 (8):
Choi, J. S., Park, H. J., Jung, H. A., Chung, H. Y., Jung, J. H., and Choi, W. C., 2000. A cyclohexanonyl
bromophenol from the red alga Symphyocladia latiuscula. Journal of Natural Products, 63 (12): 1705-1706.
Ciminiello, P., Dell'Aversano, C., Fattorusso, E., Magno, S., and Pansini, M., 2000. Chemistry of verongida
sponges. 10. Secondary metabolite composition of the caribbean sponge Verongula gigantea. Journal of Natural Products, 63 (2): 263-266.
Duan, X. J., Li, X. M., and Wang, B. G., 2007. Highly bro- minated mono- and bis-phenols from the marine red
alga Symphyocladia latiuscula with radical-scavenging activity. Journal of Natural Products, 70 (7):
El Gamal, A. A., 2010. Biological importance of marine algae. Saudi Pharmaceutical Journal, 18 (1): 1-25.
Fu, X., and Schmitz, F. J., 1996. New brominated diphenyl ether from an unidentified species of Dysidea sponge.
13c nmr data for some brominated diphenyl ethers. Journal of Natural Products, 59 (11): 1102-1103.
Fu, X., Schmitz, F. J., Govindan, M., Abbas, S. A., Hanson, K. M., Horton, P. A., Crews, P., Laney, M., and
Schatzman, R. C., 1995. Enzyme inhibitors: New and known polybrominated phenols and diphenyl ethers from
LIN et al. / J. OceanUniv. China (Oceanic and Coastal Sea Research) 2012 11 (4): 533-538
four indo-pacific Dysidea sponges. Journal of Natural Products, 58 (9): 1384-1391.
Guo, S. J., Li, J., Li, T., Shi, D. Y., and Han, L. J., 2011. Synthesis of three bromophenols from red algae as ptp1b
inhibitors. Chinese Journal of Oceanology and Limnology, 29 (1): 68-74.
Guo, S. J., Li, J., Su, H., Shi, D. Y., and Fan, X., 2010. Recent progess in the study of bromophenol derivatives
from algae. Marine Science, 34 (4): 89-94.
Guven, K. C., Percot, A., and Sezik, E., 2010. Alkaloids in marine algae. Marine Drugs, 8 (2): 269-284.
Handayani, D., Edrada, R. A., Proksch, P., Wray, V., Witte, L., Van Soest, R. W., Kunzmann, A., and Soedarsono,
1997. Four new bioactive polybrominated diphenyl ethers of the sponge Dysidea herbacea from West Sumatra,
Indonesia. Journal of Natural Products, 60 (12): 1313-1316.
Hanif, N., Tanaka, J., Setiawan, A., Trianto, A., de Voogd, N. J., Murni, A., Tanaka, C., and Higa, T., 2007.
Polybrominated diphenyl ethers from the indonesian sponge Lamellodysidea herbacea. Journal of Natural Products, 70 (3): 432-435.
Hattori, T., Konno, A., Adachi, K., and Shizuri, Y., 2001. Four new bioactive bromophenols from the palauan
sponge Phy- llospongia dendyi. Fisheries Science, 67 (5): 899-903.
Horikawa, Y., and Takeda, J., 2011. alpha-glucosidase inhibitors. Nihon Rinsho, 69 (Suppl. 1): 641-644.
Jiang, B., Shi, D. Y., Cui, Y. C., and Guo, S. J., 2012. Design, synthesis, and biological evaluation of bromophenol
de- rivatives as protein tyrosine phosphatase 1b inhibitors. Archiv der Pharmazie, 345 (6): 444-453.
Kicklighter, C. E., Kubanek, J., and Hay, M. E., 2004. Do brominated natural products defend marine worms from
consumers? Some do, most don’t. Limnology and Ocean- ography, 49 (2): 430-441.
Kim, K. Y., Nam, K. A., Kurihara, H., and Kim, S. M., 2008. Potent alpha-glucosidase inhibitors purified from the
red alga grateloupia elliptica. Phytochemistry, 69 (16): 2820-2825.
Kim, K. Y., Nguyen, T. H., Kurihara, H., and Kim, S. M., 2010. Alpha-glucosidase inhibitory activity of
bromophenol puri- fied from the red alga Polyopes lancifolia. Journal of Food Science, 75 (5): H145-150.
Koren, S., and Fantus, I. G., 2007. Inhibition of the protein tyrosine phosphatase ptp1b: Potential therapy for
obesity, insulin resistance and type-2 diabetes mellitus. Best Practice & Research Clinical Endocrinology & Metabolism, 21 (4): 621-640.
Kurihara, H., Mitani, T., Kawabata, J., and Takahashi, K., 1999a. Inhibitory potencies of bromophenols from
rhodomelaceae algae against α-glucosidase activity. Fish Science, 65: 300- 303.
Kurihara, H., Mitani, T., Kawabata, J., and Takahashi, K., 1999b. Two new bromophenols from the red alga
Odonthalia corymbifera. Journal of Natural Products, 62 (6): 882-884.
Lee, J. H., Lee, T. K., Kang, R. S., Shin, H. J., and Lee, H. S., 2007. The in vitro antioxidant activities of the
bromophenols from the red alga Tichocarpus crinitus and phenolic derivatives. Journal of the Korean Magnetic Resonance Society, 11: 56-63.
Li, K., Li, X. M., Ji, N. Y., and Wang, B. G., 2008. Bro- mophenols from the marine red alga Polysiphonia urceolata with dpph radical scavenging activity. Journal of Natural Products, 71 (1): 28-30.
Li, K., Li, X. M., Gloer, J. B., and Wang, B. G., 2011. Isolation, characterization, and antioxidant activity of
bromophenols of the marine red alga Rhodomela confervoides. Journal of Agricultural and Food Chemistry, 59
Li, K., Li, X. M., Ji, N. Y., and Wang, B. G., 2007. Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): Structural elucidation and dpph radical-scavenging activity. Bioorganic &
LIN et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2012 11 (4): 533-538
Medicinal Chemistry, 15 (21): 6627-6631.
Lindsay, B. S., Battershill, C. N., and Copp, B. R., 1998. Isolation of 2-(3'-bromo-4'-hydroxyphenol)ethanamine
from the New Zealand ascidian Cnemidocarpa bicornuta. Journal of Natural Products, 61 (6): 857-858.
Liu, H. W., Namikoshi, M., Meguro, S., Nagai, H., Kobayashi, H., and Yao, X. S., 2004. Isolation and
characterization of polybrominated diphenyl ethers as inhibitors of microtubule assembly from the marine
sponge Phyllospongia dendyi collected at palau. Journal of Natural Products, 67 (3): 472- 474.
Liu, M., Hansen, P. E., and Lin, X., 2011a. Bromophenols in marine algae and their bioactivities. Marine Drugs, 9
Liu, M., Zhang, W., Wei, J., and Lin, X., 2011b. Synthesis and alpha-glucosidase inhibitory mechanisms of bis
(2,3-dibromo- 4,5-dihydroxybenzyl) ether, a potential marine bromophenol alpha-glucosidase inhibitor. Marine Drugs, 9 (9): 1554-1565.
Rudi, A., Evan, T., Aknin, M., and Kashman, Y., 2000. Polycitone b and prepolycitrin a: Two novel alkaloids from
the marine ascidian Polycitor africanus. Journal of Natural Products, 63 (6): 832-833.
Scott, L. J., and Spencer, C. M., 2000. Miglitol: A review of its therapeutic potential in type 2 diabetes mellitus.Drugs, 59 (3): 521-549.
Shi, D. Y., Li, J., Jiang, B., Guo, S. J., Su, H., and Wang, T., 2012. Bromophenols as inhibitors of protein tyrosine
phosphatase 1b with antidiabetic properties. Bioorganic & Medicinal Chem- istry Letters, 22 (8): 2827-2832.
Shi, D. Y., Xu, F., He, J., Li, J., Fan, X., and Han, L. J., 2008. Inhibition of bromophenols against ptp1b and
anti-hyper- glycemic effect of Rhodomela confervoides extract in diabetic rats. Chinese Science Bulletin, 53
Shi, Y. C., and Pan, T. M., 2012. Red mold, diabetes, and oxidative stress: A review. Applied Microbiology and Bio- technology, 94 (1): 47-55.
Shridhar, D. M., Mahajan, G. B., Kamat, V. P., Naik, C. G., Parab, R. R., Thakur, N. R., and Mishra, P. D., 2009.
Antibacterial activity of 2-(2',4'-dibromophenoxy)-4,6-dibro- mophenol from Dysidea granulosa. Marine Drugs,
7 (3): 464- 471.
Suzen, S., and Buyukbingol, E., 2003. Recent studies of aldose reductase enzyme inhibition for diabetic
complications. Current Medicinal Chemistry, 10 (15): 1329-1352.
Utkina, N. K., Denisenko, V. A., Scholokova, O. V., Virovaya, M. V., Gerasimenko, A. V., Popov, D. Y., Krasokhin,
V. B., and Popov, A. M., 2001. Spongiadioxins a and b, two new polybrominated dibenzo-p-dioxins from an
australian marine sponge Dysidea dendyi. Journal of Natural Products, 64 (2): 151-153.
Utkina, N. K., Denisenko, V. A., Virovaya, M. V., Scholokova, O. V., and Prokof’eva, N. G., 2002. Two new minor
poly- brominated dibenzo-p-dioxins from the marine sponge Dysidea dendyi. Journal of Natural Products, 65
Wang, W., Okada, Y., Shi, H., Wang, Y., and Okuyama, T., 2005. Structures and aldose reductase inhibitory effects
of bromophenols from the red alga Symphyocladia latiuscula. Journal of Natural Products, 68 (4): 620-622.
Wijesekara, I., Pangestuti, R., and Kim, S. K., 2011. Biological activities and potential health benefits of sulfated
poly- saccharides derived from marine algae. Carbohydrate Poly- mers, 84: 14-21.
Zhang, S., and Zhang, Z. Y., 2007. Ptp1b as a drug target: recent developments in ptp1b inhibitor discovery. Drug Discovery Today, 12 (9–10): 373-381.
Zhao, W., Feng, X., Ban, S., Lin, W., and Li, Q., 2010. Synthesis and biological activity of halophenols as potent
LIN et al. / J. OceanUniv. China (Oceanic and Coastal Sea Research) 2012 11 (4): 533-538
antioxidant and cytoprotective agents. Bioorganic Medicinal Chemistry Letters, 20 (14): 4132-4134.
Inactivity Fact Sheet CONTACT American College of Sports Medicine INACTIVITY EPIDEMIC REFERENCES Low activity increases risk of death. Physical inactivity: the biggest public health problem of the 21st century Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med 2009; 43:1-2. Prevalence of inactivity in the US acco
For the first time in 30 years the tissue market in Europe is starting to falter,especially at the consumer level. So European tissue makers, in an effortto win back market share, are looking at innovative ways to enticeconsumers, even to the extent of producing pricey toilet tissue in a varietyof colors. By David Price In the January/February issue of this magazine, P&G in a corpor